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Our works on the fictitious domain method for the direct numerical simulation of particulate flows are
reviewed, and particularly our recent progresses in the simulations of the motion of particles in Poiseuille
flow at moderately high Reynolds numbers are reported. The method is briefly described, and its capa-
bility to simulate the motion of spherical and non-spherical particles in Newtonian, non-Newtonian
and non-isothermal fluids is demonstrated. In addition, the applications of the fictitious domain method
reported in the literature are also reviewed, and some comments on the features of the fictitious domain
method and the immersed boundary method are given.
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1. Introduction

Particulate flows are ubiquitous in nature and industrial appli-
cations. Dynamic simulation of the motion of particles in particu-
late flows is capable of providing both microscopic and
macroscopic information and consequently has become an impor-
tant investigative tool for multiphase flow problems. A variety of
dynamic simulation methods for particulate flows have been pro-
posed in the literature: the point-particle-approximation-based
methods (Crowe et al., 1998), the low-Reynolds-number-theory-
based methods such as Stokesian dynamics (Brady and Bossis,
1988), the boundary element method (e.g. Phan-Thien et al.,
1991) and the slender-body theory (e.g. Lin et al., 2003), the
force-coupling method (Lomholt et al., 2002; Lomholt and Maxey,
2003), the physalis method (Zhang and Prosperetti, 2005) and sev-
eral other boundary-fitted and non-boundary-fitted methods. The
typical boundary-fitted methods are the Arbitrary Lagrangian–
Eulerian (ALE) finite element method (Hu et al., 1992, 2001; Hu,
1996) and the space–time finite element method (Johnson and
Tezduyar, 1996). The non-boundary-fitted methods include the
lattice Boltzmann method (e.g. Ladd, 1994; Ladd and Verberg,
2001; Aidun et al., 1998; Qi, 1999; Feng and Michaelides, 2005),
the fictitious domain method (FD) (e.g. Glowinski et al., 1999,
2001; Patankar et al., 2000; Yu et al., 2004; Hwang et al., 2004;
Sharma and Patankar, 2005; Veeramani et al., 2007; Yu and Shao,
2007), the immersed boundary (IB) method (e.g. Höfler and Sch-
warzer, 2000; Uhlmann, 2005; Kim and Choi, 2006; Wang et al.,
ll rights reserved.
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2008), and the immersed interface method (e.g. Le et al., 2006;
Xu and Wang, 2006). We note that the physalis method (Zhang
and Prosperetti, 2005) is also a non-boundary-fitted method, but
differs from others in that the general analytic solution of the
Stokes equations is used in the particle boundary region to transfer
the no-slip condition from the particle surface to the adjacent grid
nodes and compute the hydrodynamic force on the particle. This
technique has been shown to allow for accurate solution of partic-
ulate flows up to a particle Reynolds number of one hundred on
coarse grids, and later adopted by Perrin and Hu (2008) in their ex-
plicit finite difference scheme. For the boundary-fitted methods,
the fluid flow is computed on a boundary-fitted mesh and repeated
re-meshing and solution projection is normally required as the
interfaces move, whereas for the non-boundary-fitted methods,
the fluid flow is computed on a stationary grid, thus eliminating
the need for repeated re-meshing and projection (Joseph, 2002).
As a result, the non-boundary-fitted methods are, generally speak-
ing, simpler and more efficient than the boundary-fitted methods,
in particular for the simulation of concentrated suspensions.

The fictitious domain (FD) method was initially developed to
solve partial differential equations in a complex geometry, as
pointed by Glowinski et al. (1999). Glowinski et al. (1994a,b,
1995, 1997) described the FD methods for the Dirichlet problem
in which the boundary condition is enforced with the Lagrange
multiplier method, and they employed the methods to solve some
differential equations and the incompressible viscous unsteady
flows in complex or moving geometries. The Lagrange multiplier
based FD method was also used by Bertrand et al. (1997) and Tan-
guy et al. (1996) to calculate the three-dimensional Stokes flows of
Newtonian and viscoplastic fluids in a mixer. Glowinski et al.
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(1999) developed the distributed Lagrange multiplier based FD
method (DLM/FD) to simulate particulate flows where the rigid
particles move freely. The key idea in this method is that the inte-
rior domains of the particles are filled with the same fluids as the
surroundings and the Lagrange multiplier (i.e. a pseudo body force)
is introduced to enforce the interior (fictitious) fluids to satisfy the
constraint of rigid-body motion (Glowinski et al., 1999). In the
DLM/FD code of Glowinski et al. (2001), the finite element method
was used to solve the fluid equations, and a twice-coarser pressure
element with respect to the velocity element was adopted. Patan-
kar et al. (2000) proposed a version of the DLM/FD technique that
imposed the deformation rate tensor in the particle domain equal
to zero. Patankar (2001) developed a fast computation technique in
which the flow fields were solved with a finite difference method
and the velocities of particle were obtained explicitly without iter-
ation. This approach was later published by Sharma and Patankar
(2005). Yu et al. (2002) substituted the Q1-P0 finite element meth-
od for the twice-coarser pressure element based one, and Yu et al.
(2004) further replaced the Q1-P0 finite element method with a
half-staggered finite difference method for the solution of the flow
fields. Hwang et al. (2004) proposed a DLM/FD method for the sim-
ulation of particle motion in a sliding bi-periodic box at low Rey-
nolds numbers. Unlike other versions, where the DLM is
distributed in the solid domain and the operator-splitting scheme
is adopted to simplify the computations, in the code of Hwang
et al., the DLM is distributed only on the particle boundary, and
the whole system is solved all together which eliminates the split-
ting error but increases the computational cost substantially. Shar-
ma and Patankar (2004) proposed an iterative DLM scheme which
is suitable for low Re or quasi-Stokes simulations, and they applied
this approach to the simulation of Brownian motion of particles.
Veeramani et al. (2007) and Yu and Shao (2007) developed the
non-iterative DLM/FD schemes in which the particle velocities
and the pseudo body force (Lagrange multiplier) were obtained
explicitly, as in Sharma and Patankar (2005), but the derived
expressions for the particle velocities and the computational
schemes for the flow problem were different for these three meth-
ods. The fictitious domain method has been applied to various par-
ticulate flows such as the sedimentation of 6400 circular particles
in a two-dimensional cavity in the Rayleigh–Taylor instability (Pan
et al., 2001), the fluidization of a bed of 1024 spherical particles
(Pan et al., 2002), the sedimentation of a spherical particle in a ver-
tical tube (Yu et al., 2004), the sedimentation of two spheroids (Pan
et al., 2005), the pattern formation of a rotating suspension of non-
Brownian settling particles in a fully filled cylinder (Pan et al.,
2007), the sedimentation of circular particles in viscoelastic fluids
(Singh et al., 2000; Yu et al., 2002), the sedimentation of spherical
particles in viscoelastic fluids (Singh and Joseph, 2000), shear-
thinning fluids (Yu et al., 2006a) and Bingham fluids (Yu and
Wachs, 2007), the inertia-induced migration in a plane Poiseuille
flow (Pan and Glowinski, 2002) and a circular Poiseuille flow
(Yu et al., 2004; Pan and Glowinski, 2005; Shao et al., 2008), the
particle motion in a sliding bi-periodic frame (Hwang et al.,
2004) and a planar elongational flow (Hwang and Hulsen, 2006),
flow-induced crystallization of particle-filled polymers (Hwang et
al., 2006), the rotation of a spheroid in a Couette flow (Yu et al.,
2007a) and a pipe flow (Pan et al., 2008), the shear-induced migra-
tion in a 2D circular Couette flow (Yu et al., 2007b), the heat trans-
fer between particles and fluids (Yu et al., 2006b), the motion of
floating particles (Singh and Joseph, 2005), and the electrophoresis
of particles (Kadaksham et al., 2004). We note that the DLM/FD
method has been extended by Baaijens (2001) and Yu (2005) to
handle the fluid/elastic–structure interactions.

Compared to the lattice Boltzmann method, the DLM/FD meth-
od has an advantage of flexibility in the sense that it can be easily
extended to any phenomenological equations such as the Poisson
equation and the constitutive equations for a complex or non-
Newtonian fluid whereas the extension of the lattice Boltzmann
method to a complex fluid or the Poisson equation is much more
involved.

There is no essential difference between the so-called fictitious
domain and immersed boundary methods particularly for the
fluid–particle (or structure) interaction problem since both terms
of ‘fictitious domain’ and ‘immersed boundary’ refer to the
non-boundary-fitted feature of the methods and any solid body
has both volume (fictitious domain) and boundary (immersed).
The non-boundary-fitted methods can be classified into two fami-
lies: the body-force-based methods and non-body-force-based
methods, depending on whether or not a pseudo body force (or
momentum forcing) is introduced into the fluid momentum
equations to enforce the rigid-body motion constraint in the parti-
cle domain or the no-slip condition on the particle boundary. All FD
methods mentioned above are the body-force-based methods. In
the original DLM/FD methods, the Lagrange multiplier is deter-
mined implicitly from the rigid-body motion constraint and solved
together with the particle and fluid velocities. However, the
Lagrange multiplier can also be calculated explicitly from the frac-
tional-step time scheme and some reasonable approximations, and
it appears to lose its original sense of the Lagrange multiplier (Pat-
ankar, 2001; Sharma and Patankar, 2005; Veeramani et al., 2007;
Yu and Shao, 2007). The IB methods reported in the literature have
body-force-based and non-body-force-based versions. In the body-
force-based version, the body force is calculated explicitly from the
spring force scheme (Peskin, 2002; Höfler and Schwarzer, 2000) or
the direct-forcing scheme (Uhlmann, 2005; Kim and Choi, 2006).
Many non-body-force-based IB methods have been proposed for
the solution of the flow in a complex geometry (Mittal and Iaccari-
no, 2005), and in principle, these methods can be directly applied
to the fluid–particle interactions since the hydrodynamic forces
on the particles can be computed with the resolved flow fields.
However, the body-force-based FD or IB methods have been pre-
dominately used for the particulate flows. A probable reason is:
the hydrodynamic forces on the particles are of most importance
to the simulation of the particulate suspensions, and it is difficult
to obtain the accurate hydrodynamic forces via the computation
of the fluid stress on the particle boundary for the non-
body-force-based IB methods unless fine mesh is used, whereas
for the body-force-based FD or IB method the hydrodynamic forces
can be determined from the integration of the pseudo body
force with reasonable accuracy even for coarse mesh, and further-
more the explicit computation of the hydrodynamic forces is
normally not required to determine the particle velocities, which
might be helpful to the robustness of the methods (Glowinski et
al., 1999).

The primary aim of the present paper is to review our works on
the FD method. The rest of the paper is organized as follows: In
Section 2, we describe briefly our direct-forcing fictitious domain
(DF/FD) method. In Section 3, we present a review of the applica-
tions of our FD codes and some validations. The conclusions are
given in the final section.
2. Fictitious domain method

2.1. FD formulation

The DF/FD method is an improved version of our previous DLM/
FD code. The DF/FD code is more efficient than the DLM/FD code
since the Lagrange multiplier and the particle velocities are ob-
tained without iteration, and it has been demonstrated that the
DF/FD method is equally accurate and robust as the DLM/FD meth-
od (Yu and Shao, 2007). We briefly describe the DF/FD method in
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the following, and more details on the method is referred to Yu and
Shao (2007).

For simplicity of description, we will consider only one particle
in the following exposition. Suppose that the particle density, vol-
ume and moment of inertia tensor, translational velocity, and
angular velocity is qs, Vp, J, U, and xs, respectively. The fluid viscos-
ity and density is l and qf, respectively. Let P(t) represent the solid
domain, and X the entire domain including interior and exterior of
the solid body. By introducing the following scales for the non-
dimensionlization: Lc for length, Uc for velocity, Lc/Uc for time,
qf U2

c for the pressure, and qf U2
c=Lc for the pseudo body force, the

dimensionless FD formulation in strong form for the incompress-
ible fluid can be written as follows:

@u
@t
þ u � ru ¼ r

2u
Re
�rpþ k; in X; ð1Þ

u ¼ Uþ xs � r; in PðtÞ; ð2Þ
r � u ¼ 0; ; ð3Þ
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dt
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� �
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In the above equations, u, p, k, and r are, respectively, the fluid
velocity, the fluid pressure, the pseudo body force that is defined in
the solid domain, and the position vector with respect to the par-
ticle mass center. qr denotes the particle–fluid density ratio, Re
the Reynolds number defined by Re = qfUcLc/l, Fr the Froude num-
ber defined by Fr ¼ gLc=U2

c , V�p the dimensionless particle volume
(area in case of two-dimensions) defined by V�p ¼ Vp=Ld

c (d being
the dimensionality of the problem), and J� the dimensionless mo-
ment of inertia tensor defined by J� ¼ J=ðqsL

dþ2
c Þ The weak formula-

tion of (1)–(5) was derived by Glowinski et al. (1999).
a b

dc

Fig. 1. Arrangements of Lagrangian points in cases of (a) a 2D cylinder with the no-
slip condition enforced only on the boundary, (b) a circular particle, (c) a spherical
particle (only the points on one layer is shown), and (d) a prolate spheroid. From Yu
and Shao (2007).
2.2. Numerical schemes

A fractional-step time scheme is used to decouple the system
(1)–(5) into the following two sub-problems.

Fluid sub-problem for u*, p:

u� �un

Dt
�r

2u�

2Re
¼�rp�1

2
3ðu �ruÞn�ðu �ruÞn�1
h i

þr
2un

2Re
þkn; ð6Þ

r�u� ¼0: ð7Þ

A finite-difference-based projection method on a homogeneous
half-staggered grid is used for the solution of the above fluid equa-
tions (6) and (7). The diffusion problem (6) can be decomposed
into tri-diagonal systems with the ADI technique and the Poisson
equation for the pressure arising from the projection scheme is
solved with the FFT-based fast solver. All spatial derivatives are
discretized with the second-order central difference scheme.

Particle sub-problem for Un+1, xn+1:
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Note that the above equations have been re-formulated so that
all the right-hand side terms are known quantities and conse-
quently the particle velocities Unþ1 and xnþ1 are obtained without
iteration, unlike the original DLM/FD method.

Then, knþ1 defined at the Lagrangian nodes are determined
from:

knþ1 ¼ Unþ1 þ xnþ1
s � r� u�

Dt
þ kn; ð10Þ
and the fluid velocities un+1 at the Eulerian nodes are obtained
from:

unþ1 ¼ u� þ Dtðknþ1 � knÞ: ð11Þ

In the above manipulations, the bi-linear (or tri-linear) function
is used to interpolate the fluid velocity from the Eulerian nodes to
the Lagrangian nodes, and to distribute the pseudo body force from
the Lagrangian nodes to the Eulerian nodes. The arrangements of
Lagrangian points for circular, spherical and spheroidal particles
are depicted in Fig. 1. The Lagrangian (collocation) points are also
used to compute the integral terms in (8) and (9) and the moment
of inertia tensor (and possibly the mass center for particles of
unsymmetrical shape).

The artificial repulsive force collision model (Glowinski et al.,
1999), the lubrication model (Sierou and Brady, 2001) and the
hard-sphere collision model (Crowe et al., 1998) have been imple-
mented in our code (Yu et al., 2002, 2006b; Shao et al., 2008) to
prevent the mutual penetration of particles. We notice that
Ardekani and Rangel (2008), Ardekani et al. (2008), and Wachs
(2009) have recently proposed nice collision schemes for their FD
simulations.

The reader is referred to Yu and Shao (2007) for the scheme for
the non-spherical particles, Yu et al. (2006a) for the thixotropic
shear-thinning and viscoelastic fluids, Yu and Wachs (2007) for
the Bingham fluids, and Yu et al. (2006b) for the non-isothermal
fluids.
3. Validations and applications

3.1. Particle motion in Newtonian fluids

In Yu et al. (2004), the sedimentation of a sphere and its radial
migration in a Poiseuille flow in a vertical tube filled with a New-
tonian fluid were simulated with the DLM/FD code. The flow fea-
tures, the settling velocities, the trajectories and the angular
velocities of the spheres settling in a tube at different Reynolds
numbers were presented. The radial, angular and axial velocities
of both neutrally buoyant and non-neutrally buoyant spheres in
a circular Poiseuille flow were reported for the tube Reynolds num-
ber up to 300. The results were in remarkably good agreement
with the available experimental data.

In Shao et al. (2008), the inertial migration of neutrally-buoyant
spherical particles in a circular Poiseuille flow was numerically
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investigated for the tube Reynolds number up to 2200 with the DF/
FD code. Inner equilibrium positions were observed as the Rey-
nolds number exceeded a critical value, in qualitatively agreement
with the previous experimental observations (Matas et al., 2004).
The results indicated that the pipe length had a significant effect
on the equilibrium position of the particle, and the particle could
stay stably in the vicinity of the pipe wall at a higher Reynolds
number in a shorter pipe. In addition, the particle was observed
to induce stable mirror-symmetric structures, characterized by
the velocity streaks and secondary flows, similar to the traveling-
wave solution found in pipe flow (Pringle and Kerswell, 2007).
The particle-induced structures appeared stronger in a longer pipe
probably due to the fact that the secondary flows at upstream and
downstream of a particle were directed oppositely and thus could
be suppressed at a small distance between the consecutive parti-
cles, therefore, one could assume that the particle-induced struc-
tures served to push the particle away from the pipe wall in a
longer pipe.

Shao et al. (2008) observed that there existed two branches of
stable equilibrium positions at the particle–pipe radius ratio a/R
being 0.15 and the pipe length being 2, as shown in Fig. 2. The par-
ticle migrated to the outer Segré–Silberberg branch at Re smaller
than Rec1 (around 1000), and to the inner one at Re larger than
Rec2 (around 1300), irrespective of its initial position. For Re-
c1 6 Re 6 Rec2, the particle migrated to either the outer one or the
inner one, depending on its initial position. The above results indi-
cate that there existed an unstable branch of equilibrium positions
(i.e., zero lift force) connecting the two stable ones for Rec

1 6 Re 6 Rec2. We note that a similar turning point bifurcation behav-
ior was previously observed for a non-zero lift force on a circular
particle (or the lift-off position of a heavier particle) in a plane
Poiseuille flow by Patankar et al. (2001).

The inertial migration of a single neutrally-buoyant circular
particle in both non-oscillatory and oscillatory pressure-driven
flows in a 2D channel at moderately high Reynolds numbers has
been numerically investigated in Sun et al. (2009). In both non-
oscillatory and oscillatory cases, there was only one equilibrium
position for any Reynolds number, and the equilibrium positions
first shift closer to the channel wall and then closer to the channel
centerline as the Reynolds number increases. The equilibrium posi-
tions for a spherical particle in a 3D non-oscillatory channel flow
were also computed and found to behave in the same way as the
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Fig. 2. Comparison of lateral equilibrium positions of neutrally-buoyant particles in
the 2D and 3D channels, and the pipe at different Reynolds numbers. a/H = 0.15, L/
H = 2 (H being half channel height) for the channel case and a/R = 0.15, L/R = 2 for
the pipe case. From Sun et al. (2009).
2D case, as shown in Fig. 2. The reason for the difference in the
equilibrium positions between the channel and pipe flows was
attributed to the effects of the outer boundary on the particle-in-
duced flow structures. The oscillatory flow generally made the
equilibrium position closer to the channel centerline, and the equi-
librium positions were more sensitive to the frequency than the
amplitude of the oscillatory pressure gradient.

We have recently simulated the particle-laden pipe flow at the
Reynolds number ranging from 1500 to 3500, in an attempt to re-
veal the mechanism by which particles trigger the turbulence tran-
sition, as observed by Matas et al. (2003). The periodic boundary
condition is introduced in the streamwise direction and the pres-
sure gradient is fixed to be constant. We take the tube radius
and the maximum velocity of initial laminar flow as the character-
istic length and velocity, respectively. Fig. 3 shows the velocity
fields in the streamwise plane passing through the particle center
at different times for (Re, a/R, L/R) = (1500, 0.1, 4). The results indi-
cate that in the L = 4R pipe the flow structure induced by the par-
ticle of a/R = 0.1 loses stability at Re = 1500, namely, the intensity
of streamwise vortices increases rapidly and the flow becomes tur-
bulence (Fig. 3b–d). The motion of the particle is dominated by the
streamwise vortices at turbulence stage. The flow relaminarizes
subsequently, and the particle migrates to the equilibrium position
again (Fig. 3e). The particle then can trigger another round of the
flow instability, till the system eventually reaches a stable state:
the particle spirals forward along the tube wall, accompanied by
a stable flow structure, as shown in Fig. 3f. More results, including
those for higher Reynolds numbers, multiple particles and larger
particles will be reported in another paper.

3.2. Particle motion in non-Newtonian fluids

Yu et al. (2002) investigated the aggregation of circular particles
settling in a viscoelastic fluid with the proposed DLM/FD method
and found that the asymmetric distribution of the second normal
stress due to the rotation of the particle was responsible for the
aggregation of two side-by-side settling particles and the attrac-
tion of a particle toward the wall.

Yu et al. (2006a) proposed a DLM/FD method for the particle
motion in a thixotropic shear-thinning fluid. The accuracy of the
method was validated by comparing the computed drag coeffi-
cients for a sphere settling in a tube filled with a power-law fluid
at low Reynolds numbers to the results of Missirlis et al. (2001)
who used a boundary-fitted finite element method. In the DLM/
FD computations, two mesh resolutions were used: h = a/4 and
h = a/8. The maximum relative error in the results presented in
Fig. 4 is around 4%. The accuracy of the proposed method, as a sim-
ple non-boundary-fitted method, is satisfactory. The method was
then used to examine the aggregation of particles settling in a
thixotropic shear-thinning fluid. The results confirmed that the
memory of shear-thinning was responsible for the aggregation of
two end-to-end settling particles, and indicated that the elasticity
of the fluid, though may be weak, seemed necessary for the ran-
domly distributed particles to aggregate into stable clusters or
columns.

In Yu and Wachs (2007), a fictitious domain method for the dy-
namic simulation of particle motion in a Bingham viscoplastic fluid
was proposed. The method was verified by comparing the results
on the lid-driven cavity flow, the drag coefficient for a sphere set-
tling in a tube and the hydrodynamic interactions between two
spheres translating along the tube axis to the data available in
the literature. The computations confirmed that the drag coeffi-
cient for a sphere settling in a Bingham fluid at non-zero Reynolds
numbers can be well correlated with an effective Reynolds num-
ber. For two approaching spheres, there existed a critical separa-
tion distance above which a drag-reduction was observed and



Fig. 3. Velocity fields in the particle plane for the pipe flow at different times (a) t = 100; (b)t = 125; (c) t = 150; (d) t = 200; (e) t = 900; (f) t = 2250. (Re, a/R, L/R) = (1500, 0.1, 4).
The contours (grayscale) indicate the streamwise velocity relative to the parabolic profile with minimum (darkest) and maximum levels and the increment are �0.22, 0.26,
and 0.04, respectively.
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below which a drag-enhancement took place, compared to the
drag for a single sphere. These observations were explained by a
consideration of the competition between a shear-thinning plastic
force and a repulsive lubrication force on the sphere occurring in
the squeezing flow.

3.3. Particle motion in non-isothermal fluids

In Yu et al. (2006b), the DLM/FD method was extended to deal
with heat transfer in particulate flows in two dimensions. The
Boussinesq approximation was employed for the coupling between
the flow and temperature fields. The code for the case of fixed tem-
perature on the immersed boundary was verified by comparing
favorably the results on the natural convection driven by a hot cyl-
inder eccentrically placed in a square box and on the sedimenta-
tion of a cold circular particle in a vertical channel to the data in
the literature. The code for the case of freely varying temperature
on the boundaries of freely moving particles was applied to ana-
lyze the motion of a catalyst particle in a box and in particular
the heat conductivities of nanofluids and sheared non-colloidal
suspensions, respectively. The preliminary computational results
supported the argument that the micro-heat-convection in the flu-
ids is primarily responsible for the unusually high heat conductiv-
ity of nanofluids.

We have recently applied the method to examine the interac-
tions between the particle sedimentation and the natural convec-
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tion in a square box due to heating from the bottom plate, inspired
by the experimental work of Chen et al. (2005). In our simulations,
the width of the box is 64d, d being the particle diameter. The
dimensionless temperature is zero on the top boundary, and unity
on middle one third of the bottom boundary. The adiabatic condi-
tion is imposed on the remaining boundaries. The heat flux is con-
served across the particle/fluid interface. We take the particle
diameter as the characteristic length, and the settling velocity of
a single particle in a vertical channel of 64d width at vanishing
Reynolds numbers as the characteristic velocity, i.e.,
Fig. 5. Isotherms (a and c) and velocity fields (b and d) for the sedimentation of 200 circu
Pr = 250, and (c and d) Re = 0.4, Pr = 10. For other parameters, Gr = 0.25, kr = 5, cpr = 0.50
Uc ¼
d2

16Kl
ðqs � qf Þg; ð12Þ
in which K is a constant related to the effect of the channel width on
the drag force and can be expressed in terms of the ratio of the
channel width to the particle diameter W� (i.e., W/d) (Happel and
Brenner, 1965):
K¼ 1

lnðW�Þ�0:9157þ1:7244=ðW�Þ2�1:7302=ðW�Þ4þ2:4056=ðW�Þ6�4:5913=ðW�Þ8
:

We fix the Grashof number (based on the particle diameter)
Gr = 0.25, the density ratio qr ¼ 1:2, the heat capacity ratio
cpr = 0.50, the heat conductivity ratio kr = 5, the heat expansion ratio
br ¼ 0 (i.e., the particle density variation is not considered). Then
the relative importance of the sedimentation to the natural convec-
tion is determined by the Reynolds number and the Prandtl num-
ber, since the Reynolds number is based on the sedimentation
rate and the intensity of natural convection depends on the Ray-
leigh number which is defined by Ra = GrPr (Pr denotes the Prandtl
number). The particles are randomly distributed in the box at initial
time. Mesh size h = d/16 and time step Dt = 0.001 are used.

Fig. 5 shows the isotherms and velocity fields for 200 circular
particles at t = 50 in two cases: ( Re, Pr) = (0.02, 250), and ( Re,
Pr) = (0.4, 10). In the former case, the natural convection is strong
and predominates over the sedimentation of the particles. The
maximum rising velocity of the fluids at t = 50 is 7.6, and some par-
ticles are entrained upwards by the heat plume. For the latter case,
the maximum rising velocity of the fluids at t = 50 is 1.74, and the
sedimentation of the particles predominates over the weak natural
convection.
lar particles in a 64d � 64d square box heated at the bottom for (a and b) Re = 0.02,
, br ¼ 0, and qr ¼ 1:2.
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3.4. Non-spherical particles

We take the rotation of a spheroid in a Couette flow at low Rey-
nolds numbers as a test problem. The comparison between the ori-
entation of the spheroid calculated with DF/FD method and the
analytical Jeffery orbits for the spheroid aspect ratio ar = 2 and 3
is shown in Fig. 6. px and py are the x and y components of the unit
orientation vector along the symmetric axis of the spheroid,
respectively. The numerical and analytical results are in remark-
ably good agreement with each other.

In Yu et al. (2007a), the rotation of a spheroid in a Couette flow
at moderately high Reynolds numbers was numerically simulated
with the fictitious domain method. The study was focused on the
effects of inertia on the orbital behavior of prolate and oblate
spheroids. The numerical orbits were found to be well described
by a simple empirical model, which states that the rate of the
spheroid rotation about the vorticity axis is a sinusoidal function
of the corresponding projection angle in the flow-gradient plane,
and that the exponential growth rate of the orbit function is a con-
stant. The following transitions in the steady state with increasing
Reynolds number were identified: Jeffery orbit, tumbling, quasi-
Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid;
and Jeffery orbit, log rolling, inclined rolling, and motionless state
for an oblate spheroid.
4. Conclusion

We have briefly reviewed the fictitious domain methods for the
dynamic and direct simulations of particulate flows. Our DF/FD
method has been briefly described. Its capability to simulate the
motion of spherical and non-spherical particles in Newtonian,
non-Newtonian and non-isothermal fluids has been demonstrated,
and the main results from applications of our FD codes have been
summarized.

Our FD code is very efficient for particulate flows due to the use
of the fractional-step time scheme and a sequence of efficient solv-
ers such as the finite-difference-based projection method for the
Navier–Stokes equations, the FFT-based fast solver for the pressure
Poisson equation, the ADI scheme for the velocity diffusion equa-
tion, and the non-iterative scheme for the rigidity constraints.
However, the code is less efficient or accurate for the case of very
low Reynolds numbers because of the use of the fractional-step
time scheme, and the cases of the sedimentation at high particle
Reynolds numbers (e.g. in hundreds), the viscoplastic flow at high
Bingham numbers, and the viscoelastic flow at high Deborah num-
bers because the employed homogeneous non-boundary-fitted
mesh cannot handle well the very thin boundary layer of the veloc-
ity or the polymer stress.
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